
HQFC-C2C 模拟电路

宣传资料

本学习机可完成低频模拟电子技术课程实验。该学习机由电源,信号源,电路 开发区、电路实验区、多块低频实验板等组成,根据不同实验内容可随意选择实验 板,并方便的插接到主板实验区中。适用于开设电子技术课程的各类学校。

该学习机主板与实验板均采用独特的两用板工艺,正面印有原理图及符号,反面为印制导线,并焊有相应元器件,需要连接部分备有自锁紧式插座,需要测量及观察的部分设置有测试点,使用直观,可靠,维修方便,简捷。

本机突出特点是使用灵活,便于管理与维修,并可随意扩充实验内容(**根据用户要求另行设计实验板**),随机附有实验指导书。

一、技术性能

1. 电源:

输入: AC220V±10%

输出: DCV:

- ① +1.3V~+10V、-1.3V~-10V 两路连续可调,最大输出电流均为 500mA:
- ② +12V(误差≤5%), −12V(误差≤5%) 最大输出电流均为 500mA;
- **③** +5V(误差≤5%), -5V(误差≤5%) 最大输出电流均为 500mA; ACV: 0V、12V 最大输出电流均为 500mA;
- 3. 元件库:配有常用的电阻、电容、电位器、二极管、三极管、光耦、风扇、等元器件;
- **4. IC 插座:** 配有 8 脚、14 脚、20 脚 IC 插座;
- 5. 电路实验板: 多种扩展实验板, 可完成低频模拟电子线路实验。
- 6. 扩展实验区(扩展实验板需选购)

多用途插座,可接插 IC 芯片或阻容件,并由通用接线孔引出,方便接线使用

二、使用方法

- 1. 将标有 220V 的电源线插入市电插座,接通开关,电源指示灯亮。
- 2. 连接线:实验箱面板上的插孔是自锁式插孔,连线插头可叠插使用,插入时向下并顺时针旋转即可锁紧,松开时向上反向旋转即可拔出,**注意:不能直拉导线**。
- 3. 实验前先阅读实验指导书,在断开电源的状态下按实验线路接好连接线, 检查无误后再接通主电源。
- 4. 根据实验板线路要求接入相应电源时必须注意电源极性。
- 5. 搭接线路时不要通电,以防误操作损坏器件。

三、维护及故障排除

- 1. 维护
 - (1) 防止撞击跌落。
 - (2) 用完后拔下电源插头并盖好机箱,防止灰尘及杂物进入机箱。
 - (3) 做完实验后要将面板上插件及连线全部整理好。
- 2. 故障排除
 - (1) 电源无输出:实验箱电源初级接有 0.5A 熔断管(与实验箱 220V 交流电源插座为一体)。当输出短路或过载时有可能烧断,更换熔断管时,必须保证同规格。
 - (2)信号源异常(无输出等),检查实验板接线或更换相应元器件。

注意: 打开实验板时必须拔出电源插头。

四、实验内容

1.	单级放大电路	(扩展实验板)
2.	两级放大电路	(扩展实验板)
3.	负反馈放大电路	(扩展实验板)
4.	射极跟随器	(扩展实验板)
5.	差动放大电路	(扩展实验板)
6.	比例求和运算电路	(扩展实验板)
7.	积分与微分电路	(扩展实验板)
8.	波形发生电路	(扩展实验板)
9.	有源滤波器	(扩展实验板)
10.	电压比较器	(扩展实验板)

11. 集成电路RC正弦波振荡器 (扩展实验板) 12. 集成功率放大器 (扩展实验板) (扩展实验板) 13. 整流滤波与并联稳压电路 (扩展实验板) 14. 串联稳压电路 15. 集成稳压器 (扩展实验板) (扩展实验板) 16. RC正弦波振荡器 17. L C 振荡器及选频放大器 (扩展实验板) 18. 电流 / 电压转换电路 (实验板) 19. 电压 / 频率转换电路 (实验板) 20. 互补对称功率放大器 (实验板)

(实验板)

21. 波形变换电路